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Abstract: 

Modeling mercury speciation is an important requirement for estimating harmful emissions 

from coal-fired power plants and developing strategies to reduce them. First principle models 

based on chemical, kinetic, and thermodynamic aspects exist, but these are complex and 

difficult to develop. The use of modern data-based machine learning techniques has been 

recently introduced, including neural networks. Here we propose an alternative approach using 

abductive networks based on the group method of data handling (GMDH) algorithm, with the 

advantages of simplified and more automated model synthesis, automatic selection of 

significant inputs, and more transparent input-output model relationships. Models were 

developed for predicting three types of mercury speciation (elemental, oxidized, and particulate) 

using a small data set containing six inputs parameters on the composition of the coal used and 

boiler operating conditions. Prediction performance compares favourably with neural network 

models developed using the same dataset, with correlation coefficients as high as 0.97 for 

training data. Network committees (ensembles) are proposed as a means of improving 

prediction accuracy, and suggestions are made for future work to further improve performance.  

Index Terms: Mercury speciation, Flue gases, Boiler emissions, Predictive modeling, 

inferential emission monitoring, Soft sensors, Abductive networks, GMDH algorithm, Neural 

networks, Network committees, Network ensembles.  
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1. Introduction 

Determining Mercury speciation is an important requirement for estimating mercury emission 

from combustion flue gases and the efficiency of control measures to reduce it. Major mercury 

sources from human activities are coal-fired electric utility boilers, where speciation depends on 

the operating conditions, including the type of coal used and flue gas temperature and 

composition. Mercury compounds from combustion sources consist mainly of gaseous 

elemental mercury (Hg0), gaseous oxidized mercury (Hg2+), and particle-bound mercury (Hgp) 

[1]. Theoretical first-principle approaches have been used to study mercury speciation, 

including kinetic modeling [2] and thermodynamic equilibrium calculations [3]. Theoretical 

models rely on knowledge of the processes involved, which are often quite complex and highly 

nonlinear and therefore are difficult to describe accurately. Model development can also be 

expensive and time consuming. In addition, the above methods suffer from limited accuracy due 

to the lack of accurate rate constants of reaction mechanisms and to uncertainties caused by 

model assumptions and simplifications and incomplete understanding of mercury science [4]. 

Recently, data based modeling using machine learning techniques, such as neural networks, 

fuzzy logic, and genetic algorithms, has become a popular approach for solving complex non-

linear problems without requiring exhaustive theoretical knowledge of the phenomenon being 

modeled. Such approaches depend primarily on experimental input-output data on the process, 

which are usually readily available in large quantities, rather than accurate theoretical 

knowledge. A model for the phenomenon considered is developed through training on input-

output process data in the form of an adequate number of solved examples. Once synthesized, 

the model can be used to perform fast predictions of outputs corresponding to new cases 

previously unseen during training. The method offers a number of advantages over conventional 

approaches, including increased tolerance to noise and uncertainty, reduced need for knowledge 

on the modeled phenomenon, and the relative ease of developing and updating the model. In the 

last few years, neural networks have formed the basis of many soft (inferential) sensors for 

monitoring pollutant emissions [5-9]. Such sensors offer a cost-effective and reliable alternative 
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to expensive online analyzers in many areas of application, including mercury monitoring. 

Tsiros and Dimopoulos have used neural networks and other statistical and machine learning 

techniques to model atmospheric emission of gaseous soil mercury and identify critical factors 

for controlling such emissions [10]. Neural networks were used together with optical fiber 

chemical sensors for monitoring mercury and other heavy metals in aquatic samples [11]. 

Neural networks were used for modeling a spectrophotometric kinetic system and optimizing 

the experimental conditions for measuring traces of mercury in water [12]. Applications of 

neural networks to modeling mercury speciation in flue gases are relatively scarce in the 

literature, and  only the work by Jensen et al. [13] could be cited at the time of writing. 

 

In general, the neural network approach suffers from a number of limitations, including 

difficulty in determining optimum network topology and training parameters [14]. There are 

many choices to be made in determining numerous critical design parameters with little 

guidance available [15], and designers often resort to trial and error approaches which can be 

tedious and time consuming [16,17]. Such design parameters include the number and size of the 

hidden layers, the type of neuron transfer functions for the various layers, the learning rate and 

momentum coefficient, and training stopping criteria to avoid over-fitting and ensure adequate 

generalization with new data. Another limitation is the black box nature of neural network 

models that give little insight into the modeled relationship and the relative significance of 

various inputs, thus providing poor explanation facilities [18]. The acceptability of, and 

confidence in, automated prediction tools in areas such as electric load forecasting, pollution 

control and medical diagnosis are related to their transparency and their ability to justify results 

to human operators, experts and decision makers [19]. To overcome such limitations, we 

propose using self-organized abductive networks [20] based on the group method of data 

handling (GMDH) learning algorithm [21,22] as an alternative machine learning approach to 

modeling and estimating mercury speciation in the flue gasses of coal-fired power plants. We 

have previously used this approach in several weather prediction applications including 
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modeling and forecasting the minimum [23] and maximum [24] daily temperatures and the 

hourly temperature profile [25]. Compared to neural networks, abductive networks offer the 

advantages of faster model development requiring little or no user intervention, faster 

convergence during model synthesis without the problem of getting stuck in local minima, 

automatic selection of effective input variables, and automatic configuration of the model 

structure [14]. With the model represented as a hierarchy of polynomial expressions, resulting 

analytical model relationships can provide insight into the modeled phenomena, highlight 

contributions of various inputs, and allow comparison with previously used empirical or 

statistical models. The technique automatically avoids over-fitting by using a proven 

regularization criterion based on penalizing model complexity [22] without requiring a 

dedicated validation dataset during training, as is the case with many neural network paradigms. 

 

Following a brief description of abductive networks and the underlying GMDH learning 

algorithm in Section 2, the mercury speciation dataset used in this study is described in Section 

3. In Section 4, abductive network models for the three types of mercury speciation are 

described and their performance on both the training and evaluation sets is analyzed and 

compared with neural network results reported in the literature for the same dataset. Single 

(monolithic) abductive models of various levels of model complexity are presented. Modular 

network committees (ensembles) are also introduced as a means of improving prediction 

accuracy beyond that obtained with the monolithic models. Section 5 includes conclusions and 

suggestions for future work. 
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2. GMDH and AIM Abductive Networks  

AIM (abductory inductive mechanism) [26] is a supervised inductive machine-learning tool for 

automatically synthesizing abductive network models from a database of inputs and outputs 

representing a training set of solved examples. As a GMDH algorithm, the tool can 

automatically synthesize adequate models that embody the inherent structure of complex and 

highly nonlinear systems. Automation of model synthesis not only lessens the burden on the 

analyst but also safeguards the model generated against influence by human biases and 

misjudgments. The GMDH approach is a formalized paradigm for iterated (multi-phase) 

polynomial regression capable of producing a high-degree polynomial model in effective 

predictors. The process is 'evolutionary' in nature, using initially simple (myopic) regression 

relationships to derive more accurate representations in the next iteration. To prevent 

exponential growth and limit model complexity, the algorithm selects only relationships having 

good predicting powers within each phase. Iteration is stopped when the new generation 

regression equations start to have poorer prediction performance than those of the previous 

generation, at which point the model starts to become overspecialized and therefore unlikely to 

perform well with new data. The algorithm has three main elements: representation, selection, 

and stopping. It applies abduction heuristics for making decisions concerning some or all of 

these three aspects.  

 

To illustrate these steps for the classical GMDH approach, consider an estimation data base of 

ne observations (rows) and m+1 columns for m independent variables (x1, x2, ..., xm) and one 

dependent variable y. In the first iteration we assume that our predictors are the actual input 

variables. The initial rough prediction equations are derived by taking each pair of input 

variables (xi, xj ; i,j = 1,2,...,m) together with the output y and computing the quadratic 

regression polynomial [21]:  

 y = A + B xi + C xj + D xi
2 + E xj

2 + F xi xj                                                                   (1) 
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Each of the resulting m(m-1)/2 polynomials is evaluated using data for the pair of x variables 

used to generate it, thus producing new estimation variables (z1, z2, ..., zm(m-1)/2) which would be 

expected to describe y better than the original variables. The resulting z variables are screened 

according to some selection criterion and only those having good predicting power are kept. The 

original GMDH algorithm employs an additional and independent selection set of ns 

observations for this purpose and uses the regularity selection criterion based on the root mean 

squared error rk over that dataset, where: 

1)/2m1,2,...,m(k   ;y)z(yr
ss n

1

2
n

1

2
k

2
k −=−= ∑∑

== l
l

l
ll                                                                  (2) 

 
Only those polynomials (and associated z variables) that have rk below a prescribed limit are 

kept and the minimum value, rmin, obtained for rk is also saved. The selected z variables 

represent a new database for repeating the estimation and selection steps in the next iteration to 

derive a set of higher-level variables. At each iteration, rmin is compared with its previous value 

and the process is continued as long as rmin decreases or until a given model complexity is 

reached. An increasing rmin is an indication of the model becoming overly complex, thus over-

fitting the estimation data and performing poorly on the new selection data.  Keeping model 

complexity checked is an important aspect of GMDH-based algorithms, which keep an eye on 

the final objective of constructing the model, i.e. using it with new data previously unseen 

during training. The best model for this purpose is that providing the shortest description for the 

data available [22]. Computationally, the resulting GMDH model can be seen as a layered 

network of partial quadratic descriptor polynomials, each layer representing the results of an 

iteration. 

 

A number of GMDH methods have been proposed which operate on the whole training dataset 

thus eliminating the need for a dedicated selection set. The adaptive learning network (ALN) 

approach, AIM being an example, uses the predicted squared error (PSE) criterion [22] for 

selection and stopping to avoid model overfitting, thus solving the problem of determining when 
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to stop training in neural networks. The criterion minimizes the expected squared error that 

would be obtained when the network is used for predicting new data. AIM expresses the PSE 

as: 

2)2( pNKCPMFSEPSE σ+=                                                                                               (3) 

where FSE is the fitting squared error on the training data, CPM is a complexity penalty 

multiplier selected by the user, K is the number of model coefficients, N is the number of 

samples in the training set, and  is a prior estimate for the variance of the error obtained 

with the unknown model. This estimate does not depend on the model being evaluated and is 

usually taken as half the variance of the dependent variable y [22]. As the model becomes more 

complex relative to the size of the training set, the second term increases linearly while the first 

term decreases. PSE goes through a minimum at the optimum model size that strikes a balance 

between accuracy and simplicity (exactness and generality). The user may optionally control 

this trade-off using the CPM parameter. Larger values than the default value of 1 lead to simpler 

models that are less accurate but may generalize well with previously unseen data, while lower 

values produce more complex networks that may overfit the training data and degrade actual 

prediction performance.  

2
pσ

 

AIM builds networks consisting of various types of polynomial functional elements. The 

network size, element types, connectivity, and coefficients for the optimum model are 

automatically determined using well-proven optimization criteria, thus reducing the need for 

user intervention compared to neural networks.  This simplifies model development and 

considerably reduces the learning/development time and effort. The models take the form of 

layered feed-forward abductive networks of functional elements (nodes) [26], see Fig. 1. 

Elements in the first layer operate on various combinations of the independent input variables 

(x's) and the element in the final layer produces the predicted output for the dependent variable 

y. In addition to the main layers of the network, an input layer of normalizers convert the input 
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variables into an internal representation as Z scores with zero mean and unity variance, and an 

output unitizer unit restores the results to the original problem space. AIM supports the 

following main functional elements:  

(i) A white element which consists of a constant plus the linear weighted sum of all outputs of 

the previous layer, i.e. 

"White"  Output  = w0 + w1x1 + w2x2 + w3x3 + .... + wnx n                                                            (4) 

 where x1, x2,..., xn  are the inputs to the element and w0, w1, ..., wn are the element weights.  

(ii) Single, doublet, and triplet elements which implement a third-degree polynomial expression 

with all possible cross-terms for one, two, and three inputs respectively; for example,  

"Doublet"  Output = w0 + w1x1 + w2x2 + w3x1
2 + w4x2

2 + w5x1x2 + w6x1
3 + w7x2

3                  (5) 

 

3. The dataset 

We used a dataset of experimental measurements compiled by Jensen et al. [13]. The dataset 

consists of 82 samples of measurements, each representing a coal-fired power plant in the USA 

as part of the Information Collection Request (ICR) scheme run by the Environmental 

Protection Agency (EPA) in 1998 [13]. Each record contains six explanatory input variables 

representing the coal properties and the boiler operating conditions that are known to affect 

mercury speciation emission, as well as three outputs representing elemental, oxidized, and 

particulate mercury in the flue gas of the boiler. Table 1 describes all inputs and outputs in the 

dataset.  

 
4. Abductive Network Models for Mercury Speciation  

 
We have developed abductive network models for the relationship between each of the three 

types of mercury speciation and the six input parameters in the dataset. The 82 data samples 

were randomly split into 72 samples for model training and 10 samples for model evaluation. 

The effect of varying the complexity for single (monolithic) models on the prediction accuracy 
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with both the training and evaluation sets was investigated and models giving optimum 

performance were identified. We study the significance of input selections made automatically 

during model synthesis and relate such findings with those reported in the literature. The use of 

network committees (ensembles) consisting of different models was explored as a means of 

improving prediction performance beyond that obtained by single models.  

 

4.1. Single Abductive Network Models for Mercury Speciation 

Abductive network models were developed for each of the three types of mercury speciation 

(elemental (EL), oxidized (OX), and particulate (PA)). All models were trained on the 72 

training samples and their performance evaluated on both the training set and the remaining 10-

sample evaluation set. It is noted that this evaluation subset of the data was not previously seen 

during training and did not contribute to model development in any way. Therefore, obtained 

evaluation results should give a good indication of model performance with new cases under 

similar prevailing conditions. It would be interesting to see how the abductive network models 

perform on data for power plants in the ICR scheme other than the 82 plants for which data was 

given in [13]. As a performance metric, we used the mean absolute error (MAE) defined as the 

average of the absolute values of the error between the actual and predicted values taken over 

all the samples considered. Table 2 shows model structures synthesized at various levels of 

model complexity (CPM values) for elemental mercury (EL) together with their performance on 

both the training and evaluation sets. Increased model complexity is manifested in more 

complex functional elements (e.g. Doublet instead of Linear), larger number of selected inputs, 

and larger number of layers in the model. The model structure indicates the input variables 

automatically selected by the abductive learning algorithm from the 6 inputs provided. The 

variable number is the same as the input variable number indicated in Table 1.  As model 

complexity increases (lower CPM values), the MAE on both the training and evaluation set 

initially decrease as the model better fits the training data. Further increase in model complexity 

beyond CPM = 0.2 degrades performance on the evaluation set due to overfitting. Since 
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performance on previously unseen data is the prime concern, the model generated with CPM = 

0.2 is considered the optimum model in this case. Variables 1 (Coal heat), 2 (Coal Hg), and 6 

(Outlet temperature) are used by all models synthesized, which indicates their importance as 

explanatory inputs for elemental mercury. These three input variables exhibit the largest 

correlation with the elemental mercury output, with the Pearson correlation coefficients using 

the full dataset being -0.31, 0.49, and 0.55, respectively. In addition to these variables, the 

optimum model at CPM = 0.2 also uses variable 5 (Ash %). It is noted that variable 4 (Coal S) 

does not feature in any of the elemental mercury models, which indicates that the coal sulfur 

content does not have a strong influence on elemental mercury emission. Moreover, variable 3 

(Coal Cl) is not selected by 50% the models shown in Table 2, including the optimum model 

with CPM = 0.2. The corresponding correlation coefficients between the EL output and each of 

variables 4 and 3 are 0.15 and -0.19, respectively.    

 

Table 3 shows model structures synthesized at various levels of model complexity for oxidized 

mercury (OX) together with their performance on both the training and evaluation sets. All 

models with CPM ≤ 2 use variables 3 (Coal Cl) and 4 (Coal S). Of all input variables, variable 4 

has the highest correlation coefficient with the OX output, value = 0.62. Sulfur is known to be a 

major factor in the oxidation of elemental mercury, and experimental results suggest that both 

HCl and SO2 may contribute directly to the mercury oxidation mechanism [27]. The optimum 

OX model at CPM = 0.5 uses only four input variables, including variable 1 (Coal Heat) and 6 

(Outlet temperature) in addition. Table 4 shows the results for particulate mercury (PA). All 

models with CPM ≤ 2 require the contribution of all six input variables. The optimum model at 

CPM = 2 has a 6-input 3-layer structure which is more complex than the 4-input 2-layer 

structure obtained for the optimum models for EL and OX models. This indicates that modeling 

particulate mercury using the given six inputs appears to be a more complex process compared 

to modeling elemental and oxidized mercury.  
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The cross plots in Fig. 2 indicate the correlation between the actual and predicted values for the 

three types of mercury speciation when the optimum abductive models derived from Tables 2-4 

are evaluated on the full training set of 72 samples in each case. The correlation coefficients 

range from 0.932 to 0.972 which compare favorably with the value of 0.987 quoted by [13] for a 

much smaller (13-sample) randomly selected subset of training data. Performance of the three 

optimum models on the external evaluation set of 10 samples is shown in Fig. 3 where the MAE 

error for the elemental (EL), oxidized (OX), and particulate (PA) mercury are given as 0.62, 

0.29, and 0.55 lb/1012 Btu of coal, respectively. Inspite of the complexity of the PA model, the 

plot in Fig. 3(c) shows that 50% of the evaluation samples have practically zero prediction error. 

For evaluation sample number 6, the absolute errors for the three speciation types have the 

values 0.23, 0.01, and 0.07, respectively. In the work by Jensen et al. [13], only one sample was 

used for external evaluation of the neural network models developed, and the corresponding 

absolute errors reported have the values 0.006, 0.14, and 0.30, respectively.  Our results indicate 

comparable prediction performance for the abductive and neural network models, bearing in 

mind that the abductive network models were trained on 72 samples while the neural network 

models were developed using the larger number of 81 samples. Overall, results show that 

prediction accuracy is poorest for the oxidized mercury species. Bench-scale investigations 

reported in [28] indicate that NO, NO2, hematite (α-Fe2O3), maghemite (γ-Fe2O3), and HCl 

promote the conversion of elemental mercury to oxidized and/or particulate mercury. Absence 

of such information from the dataset used is expected to degrade the predictive performance of 

the resulting models for all three species.    

 

4.2. Abductive Network Ensembles for Improved Prediction Performance 

In quest for higher prediction accuracies than those provided by single models, the concept of 

network committees (ensembles) has been adopted in many disciplines, e.g. [29-31]. With this 

approach, a number of networks are used simultaneously and their outputs combined to produce 

the final predicted committee output, see Fig. 4. The output combination module often performs 

 11



simple functions on the outputs of individual members, such as weighted averaging [32]. When 

member networks are independent, the resulting diversity in the prediction process is expected 

to boost the generalization performance, thus improving the accuracy, robustness, and reliability 

of the committee predictions. Neural networks allow great diversity in the available 

architectures (multi-layer perceptron (MLP), radial basis function (RBF), etc.), learning 

algorithms (back propagation, simulated annealing, etc.), and in the parameters that can be 

varied during training (e.g. network topology, neuron transfer functions, initial random weights, 

learning rate, momentum, stopping criteria, etc.). This allows many possibilities for constructing 

individual committee members that are reasonably independent using the same training data. 

Although neural network committees have been reported for many applications, there appears to 

be little mention of GMDH-based abductive network committees in the literature. Due to the 

self-organizing and self-stopping nature of such networks, the absence of initial random 

weights, and the little room for user intervention during training, there is less diversity in the 

models that can be synthesized using the same training data. Abductive network committees 

reported for improved classification of medical data have used member networks developed 

using different model complexities [33], different subsets of training data [33], and different 

subsets of input variables [34].  

 

We have investigated the use of abductive network committees for improving the accuracy of 

predicting mercury speciation beyond that obtained using the single models described in Section 

4.1 above. Due to the small size of the dataset available, it was not practical to train models on 

different training subsets, and therefore we utilized variations in model complexity and input 

variables to ensure a reasonable degree of independence among resulting committee members. 

Table 5 lists details of the abductive network committees developed for the EL, OX, and PA 

together with their performance on the evaluation set and the percentage reduction in prediction 

error compared to optimum models reported in Section 4.1. All network members are trained on 

the full training set. Each of the committees for EL and OX consists of two member networks 
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trained on different subsets of input variables as indicated in Table 5. The committee for PA 

consists of three member networks trained on all the input variables at different CPM values. In 

all cases, the committee output is obtained by simple averaging of the outputs of individual 

members. Improvements as high as 21% in the prediction accuracy compared to the optimum 

single model are achieved through the use of network committees. However, statistical mean 

comparison tests indicate that the decrease in the mean absolute error obtained using the 

committees described is not statistically significant at the 95% confidence level.    

5. Conclusions 

Abductive network machine learning has been demonstrated as an alternative approach for 

modeling and predicting mercury speciation in the flue gasses of coal-fired boilers. Compared to 

the neural networks approach, the proposed method simplifies model development, 

automatically selects effective inputs and gives greater insight into the modeled phenomena 

which should prove useful in developing strategies to reduce emissions. Models were 

synthesized at various levels of model complexity for each of the mercury speciation types in 

terms of the properties of the coal used and operating temperature. Model prediction 

performance was tested on the training set as well as an external evaluation subset previously 

unseen during training. Performance compares favourably with neural network models 

developed using the same data. Up to 21% reduction in prediction error was achieved through 

the use of simple network committees (ensembles) trained using different subsets of input 

variables and utilizing variations in model complexity. In general, the limited prediction 

accuracy obtained is partly attributed to the absence of important input features from the data set 

used, such as trace metal concentrations in coal and ash, excess air, and HCl and NOx content. 

Future work would seek further improvement in prediction accuracy by including such 

important inputs and using a larger dataset. Classifiers predicting exceedances of permitted 

pollution thresholds for the three speciation types can also be developed using the same 

technique.  
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Table 1. List of input and output variables for the mercury speciation dataset used. 
 
 

Input 
Variabl

e 
Number 

Description Output Description 

1 
 
Coal heat, Btu/lb, dry 
 

EL 
 
Outlet elemental Hg, lb/1012 Btu 
 

2 
 
Coal Hg, lb/1012 Btu 
 

OX 
 
Outlet oxidized Hg, lb/1012 Btu 
 

3 
 
Coal Cl, dry ppm, mass 
 

PA 
 
Outlet particulate Hg, lb/1012 Btu 
 

4 
 
Coal S, mass % dry 
 

5 
 
Ash %, dry 
 

6 
 
Outlet temperature, °F 
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Table 2. Model structures synthesized for elemental mercury (EL) at various levels of model 

complexity, together with their performance on both the training and evaluation sets. Optimum 

model is marked with *. Input variable numbers are the same as those in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CPM Resulting Model Structure           
MAE on 

Training set   
(72 samples)

MAE on external  
Evaluation set 
(10 Samples) 

5 

 

1.22 1.60 

2 
 

0.74 0.90 

1 

 

0.62 0.73 

0.5 0.56 0.67 

0.2* 

 

0.50 0.62 

0.1 

 

0.50 0.65 

EL

EL

EL

EL

EL

EL
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Table 3. Model structures synthesized for oxidized mercury (OX) at various levels of model 

complexity, together with their performance on both the training and evaluation sets. Optimum 

model is marked with *. Input variable numbers are the same as those in Table 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CPM Resulting Model Structure           
MAE on 

Training set    
(72 samples) 

MAE on external  
Evaluation set  
(10 Samples) 

5 
 

1.00 0.79 

2 
 

0.63 0.49 

1 
 

0.63 0.61 

0.5* 

 

0.46 0.29 

0.2 

 

0.32 0.49 

OX

OX 

OX

OX 

OX 
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Table 4. Model structures synthesized for particulate mercury (PA) at various levels of model 

complexity, together with their performance on both the training and evaluation sets. Optimum 

model is marked with *. Input variable numbers are the same as those in Table 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

CPM Resulting Model Structure           
MAE on 

Training set   
(72 samples)

MAE on external  
Evaluation set 
(10 Samples) 

5 

 

0.73 0.94 

2* 0.65 0.55 

1 

 

0.57 1.00 

0.5 

 

0.57 1.00 

PA 

PA

PA

PA
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Table 5. Composition and performance of network committee models developed for the three 

types of mercury speciation. All member modules are trained on the full training set of 72 

samples. Input variable numbers are the same as those in Table 1. 

  

Committee Structure 
Speciation 

Type 
 Member  

# 1 
Member   

# 2 
Member    

# 3 

MAE for 
Committee    
on External  

Evaluation Set 
(10 samples) 

%  Reduction in 
Prediction Error 
by Committee 
Compared to 

Optimum Single 
Model 

Input 
Variables 1,3,5 2,4,6 _ 

Elemental 

CPM 0.2 0.1 _ 

0.49 21% 

Input 
Variables 1,2,5 3,4,6 _ 

Oxidized 

CPM 0.5 0.2 _ 

0.25 14% 

Input 
Variables 

All six 
inputs 

All six 
inputs 

All six 
inputs 

Particulate 

CPM 0.1 0.2 2.0 

0.52 5.5% 
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Fig. 1. A typical AIM abductive network model showing various types of functional 

elements. 
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Fig. 2. Scatter plots showing the performance of the optimum single models for the three 

types of mercury speciation on the training set. 
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Fig. 3. Plots showing the performance of the optimum single models for the three types of 

mercury speciation on the evaluation set.   •: Actual, �: Predicted 
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         Fig. 4. Schematic of a network committee. 
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